A glucose/oxygen enzymatic fuel cell exceeding 1.5 V based on glucose dehydrogenase immobilized onto polyMethylene blue-carbon nanotubes modified double-sided screen printed electrodes: Proof-of-concept in human serum and saliva
Herein we report on a new hybrid enzymatic fuel cell (EFC) based on mediated/direct electron transfer, which is assembled by considering two different configurations: i) two normal screen printed electrodes (SPEs) in one electrochemical cell and ii) two double-sided SPEs each one comprising both bioanode and biocathode, connected in series. After a deep electrodes characterization, they are assembled according to the first configuration obtaining a maximal power output of 25.8 ± 0.7 μW cm−2 at a cell voltage of 0.57 V and an open circuit voltage (OCV) of 0.78 V.