Isospectralization, or how to hear shape, style, and correspondence
The question whether one can recover the shape of a geometric object from its Laplacian spectrum (‘hear the shape of the drum’) is a classical problem in spectral geometry with a broad range of implications and applications. While theoretically the answer to this question is negative (there exist examples of iso-spectral but non-isometric manifolds), little is known about the practical possibility of using the spectrum for shape reconstruction and optimization.