Drag reduction induced by superhydrophobic surfaces in turbulent pipe flow
The drag reduction induced by superhydrophobic surfaces is investigated in a turbulent pipe flow. Wetted superhydrophobic surfaces are shown to trap gas bubbles in their asperities. This stops the liquid from coming in direct contact with the wall in that location, allowing the flow to slip over the air bubbles. We consider a well-defined texture with streamwise grooves at the walls in which the gas is expected to be entrapped. This configuration is modeled with alternating no-slip and shear-free boundary conditions at the wall.