Control strategies

Urban and extra-urban hybrid vehicles: a technological review

Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards.

Optimal reachability with obstacle avoidance for hyper-redundant and soft manipulators

We address an optimal reachability problem in constrained environments for hyper-redundant and soft planar manipulators. Both the discrete and continuous devices are inextensible and they are characterized by a bending moment, representing a natural resistance to leave the position at rest, an inequality constraint forcing the bending below a fixed threshold, and a control term prescribing local bending.

Optimal Reachability and Grasping for a Soft Manipulator

We investigate optimal reachability and grasping problems for a planar soft manipulator, from both a theoretical and numerical point of view. The underlying control model describes the evolution of the symmetry axis of the device, which is subject to inextensibility and curvature constraints, a bending moment and a curvature control. Optimal control strategies are characterized with tools coming from the optimal control theory of PDEs. We run some numerical tests in order to validate the model and to synthetize optimal control strategies.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma