fractional refinable functions

A multiscale collocation method for fractional differential problems

We introduce a multiscale collocation method to numerically solve differential problems involving both ordinary and fractional
derivatives of high order. The proposed method uses multiresolution analyses (MRA) as approximating spaces and takes advantage
of a finite difference formula that allows us to express both ordinary and fractional derivatives of the approximating function in a closed form. Thus, the method is easy to implement, accurate and efficient. The convergence and the stability of the multiscale

A fractional spline collocation method for the fractional order logistic equation

We construct a collocation method based on the fractional B-splines to solve a nonlinear differential problem that involves fractional derivative, i.e. the fractional order logistic equation. The use of the fractional B-splines allows us to express the fractional derivative of the approximating function in an analytic form. Thus, the fractional collocation method is easy to implement, accurate and efficient. Several numerical tests illustrate the efficiency of the proposed collocation method.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma