molecular biology

Methods of isolation and characterization of oligogalacturonide elicitors

Oligogalacturonides (OGs) are pectic fragments derived from the partial degradation of homogalacturonan in the plant cell wall and able to elicit plant defence responses. Recent methodological advances in the isolation of OGs from plant tissues and their characterization have confirmed their role as bona fide plant Damage-Associated Molecular Patterns. Here, we describe the methods for the isolation of OGs from Arabidopsis leaf tissues and for the characterization of OG structure and biological activity.

Establishment and long-term culture of human cystic fibrosis endothelial cells

Endothelial cell (EC) dysfunction has been reported in cystic fibrosis (CF) patients. Thus, the availability of CF EC is
paramount to uncover mechanisms of endothelial dysfunction in CF. Using collagenase digestion, we isolated cells from
small fragments of pulmonary artery dissected from non-CF lobes or explanted CF lungs. These cells were a
heterogeneous mixture, containing variable percentages of EC. To obtain virtually pure pulmonary artery endothelial cells

Mechanisms of endothelial cell dysfunction in cystic fibrosis

Although cystic fibrosis (CF) patients exhibit signs of endothelial perturbation, the functions of the cystic fibrosis
conductance regulator (CFTR) in vascular endothelial cells (EC) are poorly defined. We sought to uncover
biological activities of endothelial CFTR, relevant for vascular homeostasis and inflammation. We examined cells
from human umbilical cords (HUVEC) and pulmonary artery isolated from non-cystic fibrosis (PAEC) and CF
human lungs (CF-PAEC), under static conditions or physiological shear. CFTR activity, clearly detected in

NGF-dependent axon growth and regeneration are altered in sympathetic neurons of dystrophic mdx mice

Duchenne muscular dystrophy (DMD) is a lethal disease, determined by lack of dystrophin (Dp427), a muscular cytoskeletal protein also expressed by selected neuronal populations. Consequently, besides muscular wasting, both human patients and DMD animal models suffer several neural disorders. In previous studies on the superior cervical ganglion (SCG) of wild type and dystrophic mdx mice (Lombardi et al. 2008), we hypothesized that Dp427 could play some role in NGF-dependent axonal growth, both during development and adulthood.

Leukocyte telomere length in mild cognitive impairment and Alzheimer's disease patients

Numerous studies have reported an association between shortened leukocyte telomere length (LTL) and increased risk of Alzheimer's disease (AD). In this study we investigated the relationship between LTL and AD development, including in the analysis patients with amnestic mild cognitive impairment (aMCI), a clinical entity considered prodromal of AD. LTL (T/S ratio) was measured in patients with AD (n = 61) or aMCI (n = 46), and compared with LTL of age-matched controls (n = 56). Significant LTL differences were observed between controls, aMCI and AD patients (p

Drosophila male meiosis

In Drosophila males, there is no synaptonemal complex and recombination does not occur. Thus, Drosophila male meiosis is a good model system for the analysis of achiasmate chromosome segregation. In addition, due to their large size, the meiotic spindles of Drosophila males are an excellent system for mutational dissection of the mechanisms of spindle assembly. Here, we describe the main techniques for visualization of live Drosophila testes and for preparation of fixed meiotic chromosomes and spindles.

Characterization of three novel pathogenic SLC40A1 mutations and genotype/phenotype correlations in 7 Italian families with type 4 hereditary hemochromatosis

Mutations of SLC40A1 encoding ferroportin (Fpn), the unique cellular iron exporter, severely affect iron homeostasis causing type 4 hereditary hemochromatosis, an autosomal dominant iron overload condition with variable phenotypic manifestations. This disease can be classified as type 4A, better known as “ferroportin disease”, which is due to “loss of function” mutations that lead to decreased iron export from cells, or as type 4B hemochromatosis, which is caused by “gain of function” mutations, conferring partial or complete resistance to hepcidin-mediated Fpn degradation.

DNA damage stress: Cui prodest?

DNA is an entity shielded by mechanisms that maintain genomic stability and are essential for living cells; however, DNA is constantly subject to assaults from the environment throughout the cellular life span, making the genome susceptible to mutation and irreparable damage. Cells are prepared to mend such events through cell death as an extrema ratio to solve those threats from a multicellular perspective. However, in cells under various stress conditions, checkpoint mechanisms are activated to allow cells to have enough time to repair the damaged DNA.

Arc 3? UTR splicing leads to dual and antagonistic effects in fine-tuning arc expression upon BDNF signaling

Activity-regulated cytoskeletal associated protein (Arc) is an immediate-early gene critically involved in synaptic plasticity and memory consolidation. Arc mRNA is rapidly induced by synaptic activation and a portion is locally translated in dendrites where it modulates synaptic strength. Being an activity-dependent effector of homeostatic balance, regulation of Arc is uniquely tuned to result in short-lived bursts of expression. Cis-Acting elements that control its transitory expression post-transcriptionally reside primarily in Arc mRNA 3? UTR.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma