On some families of smooth affine spherical varieties of full rank

01 Pubblicazione su rivista
Paulus Kay, Pezzini Guido, Van Steirteghem Bart
ISSN: 1439-8516

Let G be a complex connected reductive group. Losev has shown that a smooth affine spherical G-variety X is uniquely determined by its weight monoid, which is the set of irreducible representations of G that occur in the coordinate ring of X. In this paper we use a combinatorial characterization of the weight monoids of smooth affine spherical varieties to classify: (a) all such varieties for G = SL(2) x C-x and (b) all such varieties for G simple which have a G-saturated weight monoid of full rank. We also use the characterization and Knop's classification theorem for multiplicity free Hamiltonian manifolds to give a new proof of Woodward's result that every reflective Delzant polytope is the moment polytope of such a manifold.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma