Drought is the leading cause of a world-wide reduction in crop yields and poses a major threat to the global food supply. The effect of soil drought on crop fitness and yield has been well taken into consideration in crop management and biotechnology approaches. However, there is increasing evidence that addressing soil drought alone may not be enough to prevent plant stress. Indeed, a changing climate is making evident that air drought -due for example to hot dry winds- is highly detrimental for plant function, survival, growth, and productivity.
This research project aims at closing the gaps in our understanding of the specific role of air drought as a key component of drought stress by characterizing and identifying the physiological and molecular traits specifically linked to air drought, using Arabidopsis thaliana as a model system.
This research will shed the basis for a full understanding of the gene networks controlling plant responses to air drought.
In addition, it will establish the role of a neglected yet increasingly critical factor of climatic impacts on plant growth, and generate data that will foster the development of crops resistant to a drier and hotter future with increasing demand for water.
This proposed research will allow the identification of the molecular networks underlying air drought responses and will also provide highly reliable single gene candidates for their further validation in basic science (by knock-out approaches) and in exploitation for agrobiotechnology, such as the marker-assisted breeding industry, with the ultimate goal of developing drought-resistant crops.
We will establish the role of a neglected yet increasingly critical factor of climatic impacts on cultivated plants. In addition, we will assist the whole scientific community, which constantly demands new omics and targeted data on drought-coping traits to be mined to identify stress resistance features and genes than can be translated to crops.
Society at large will benefit from more sustainable crops with a reduced water print. General public, scientists, industry and plant breeders share interest in understanding plants¿ responses to climate change.
BIBLIOGRAPHY
1. Samuels, R. et al. Int. J. Climatol. 38, 2280¿2297 (2018).
2. Hochman, A., Mercogliano, P., Alpert, P., Saaroni, H. & Bucchignani, E. Int. J. Climatol. 38, 5095¿5106 (2018).
3. Brilli, L., Moriondo, M., Ferrise, R., Dibari, C. & Bindi, M. Agrochimica: International Journal of Plant Chemistry, Soil Science and Plant Nutrition of the University of Pisa 58, special issue, 2014 (2014)
4. Alpert, P. & Ziv, B. J. Geophys. Res. Atmos. 94, 18495¿18514 (1989).
5. Zhu, X. & Troy, T. J. Earth¿s Futur. 6, 656¿672 (2018).
6. Kuglitsch, F. G. et al. Geophys. Res. Lett. 37, L04802 (2010).
7. Molina, M. O., Sánchez, E. & Gutiérrez, C. Sci. Rep. 10, 8801 (2020).
8. Novick, K. A. et al. Nat. Clim. Chang. 6, 1023 (2016).
9. Larcher, W. Physiological Plant Ecology. (Springer-Verlag, 2003).
10. Lin, H., Chen, Y., Zhang, H., Fu, P. & Fan, Z. Funct. Ecol. 31, 2202¿2211 (2017).
11.Ciais, P. et al. Nature 437, 529¿533 (2005).
12. Benlloch-González, M., Sánchez-Lucas, R., Benlloch, M. & Ricardo, F.-E. Sci. Hortic. (Amsterdam).240, 405¿410 (2018).
13. Shirke, P. A. & Pathre, U. V. J. Experimental Bot. 55, 2111¿2120 (2004).
14. Méndez-Toribio, M., Ibarra-Manríquez, G., Paz, H. & Lebrija-Trejos, E. J. Ecol. 108, 1347¿1357 (2020)
15. Plant Responses to Drought Stress. (Springer Berlin Heidelberg, 2012). doi:10.1007/978-3-642-32653-0.
16. Zhang, S., Tao, F. & Zhang, Z. J. Meteorol. Res. 31, 800¿808 (2017).
17. Sinclair, T. R. et al. Plant Sci. 260, 109¿118 (2017).
18. Massmann, A., Gentine, P. & Lin, C. J. Adv. Model. Earth Syst. 11, 3305¿3320 (2019).
19. Grossiord, C. et al. New Phytol. 226, 1550¿1566 (2020).
20. Chater, C. C. C., Caine, R. S., Fleming, A. J. & Gray, J. E. Plant Physiol. 174, 624¿638 (2017).
21. Dello Ioio, R. et al. Curr. Biol. 22, 1699¿1704 (2012).
22. Bertolino, L. T., Caine, R. S. & Gray, J. E. Front. Plant Sci. 10, 225 (2019).
23. Paci, P. et al. Sci. Rep. 7, 44797 (2017).
24. Fiscon, G., Conte, F., Licursi, V., Nasi, S. & Paci, P. Sci. Rep. 8, 7769 (2018).
25. Magris, G. et al. Plant J. 99:895-909 (2019)
26. Albihlal, W. S. et al. J. Exp. Bot. 69, 2847¿2862 (2018).
27. Daszkowska-Golec, A. & Szarejko, I. Front. Plant Sci. 13;4:138 (2013).
28. Serino, G. et al. Plant Cell 15, 719¿731 (2003).
29. Marzi, D. et al. Plant J. 103, 379¿394 (2020).
30. Napoli N, et al. Plant Cell 30:620-637 (2018).