cancer cachexia

Human cachexia induces changes in mitochondria, autophagy and apoptosis in the skeletal muscle

Cachexia is a wasting syndrome characterized by the continuous loss of skeletal muscle mass due to imbalance between protein synthesis and degradation, which is related with poor prognosis and compromised quality of life. Dysfunctional mitochondria are associated with lower muscle strength and muscle atrophy in cancer patients, yet poorly described in human cachexia. We herein investigated mitochondrial morphology, autophagy and apoptosis in the skeletal muscle of patients with gastrointestinal cancer-associated cachexia (CC), as compared with a weight-stable cancer group (WSC).

Targeting RAGE prevents muscle wasting and prolongs survival in cancer cachexia

Background: Cachexia, a multifactorial syndrome affecting more than 50% of patients with advanced cancer and responsible for ~20% of cancer-associated deaths, is still a poorly understood process without a standard cure available. Skeletal muscle atrophy caused by systemic inflammation is a major clinical feature of cachexia, leading to weight loss, dampening patients' quality of life, and reducing patients' response to anticancer therapy.

Displaced myonuclei in cancer cachexia suggest altered innervation

An idiopathic myopathy characterized by central nuclei in muscle fibers, a hallmark of muscle regeneration, has been observed in cancer patients. In cancer cachexia skeletal muscle is incapable of regeneration, consequently, this observation remains unaccounted for. In C26-tumor bearing, cachectic mice, we observed muscle fibers with central nuclei in the absence of molecular markers of bona fide regeneration. These clustered, non-peripheral nuclei were present in NCAM-expressing muscle fibers.

Do neurogenic and cancer-induced muscle atrophy follow common or divergent paths?

Skeletal muscle is a dynamic tissue capable of responding to a large variety of physiological stimuli by adjusting muscle fiber size, metabolism and function. However, in pathological conditions such as cancer and neural disorders, this finely regulated homeostasis is impaired leading to severe muscle wasting, reduced muscle fiber size (atrophy), and impaired function. These disease features develop due to enhanced protein breakdown, which relies on two major degradation systems: the ubiquitin-proteasome and the autophagy-lysosome.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma