satellite cells

Culture conditions influence satellite cell activation and survival of single myofibers

Single myofiber isolation protocols allow to obtain an in vitro system in which the physical association between the myofiber and its stem cells, the satellite cells, is adequately preserved. This technique is an indispensable tool by which the muscle regeneration process can be recapitulated and studied in each specific phase, from satellite cell activation to proliferation, from differentiation to fusion.

Macrophages fine tune satellite cell fate in dystrophic skeletal muscle of mdx mice

Satellite cells (SCs) are muscle stem cells that remain quiescent during homeostasis and are activated in response to acute muscle damage or in chronic degenerative conditions such as Duchenne Muscular Dystrophy. The activity of SCs is supported by specialized cells which either reside in the muscle or are recruited in regenerating skeletal muscles, such as for instance macrophages (MΦs). By using a dystrophic mouse model of transient MΦ depletion, we describe a shift in identity of muscle stem cells dependent on the crosstalk between MΦs and SCs.

Targeting PKCθ promotes satellite cell self-renewal

Skeletal muscle regeneration following injury depends on the ability of satellite cells (SCs) to proliferate, self-renew, and eventually differentiate. The factors that regulate the process of self-renewal are poorly understood. In this study we examined the role of PKCθ in SC self-renewal and differentiation. We show that PKCθ is expressed in SCs, and its active form is localized to the chromosomes, centrosomes, and midbody during mitosis.

HDAC4 regulates skeletal muscle regeneration via soluble factors

Skeletal muscle possesses a high ability to regenerate after an insult or in pathological conditions, relying on satellite cells, the skeletal muscle stem cells. Satellite cell behavior is tightly regulated by the surrounding microenvironment, which provides multiple signals derived from local cells and systemic factors. Among epigenetic mechanisms, histone deacetylation has been proved to affect muscle regeneration.

Metabolic control of muscle stem cells

Muscle stem cells, or satellite cells, are a population of adult stem cells involved in muscle growth and indispensable for adult skeletal muscle regeneration. As the quiescent state is perturbed, satellite cells undergo profound metabolic changes, named metabolic reprogramming, driving cellular activation, commitment and differentiation. Thus, modulation of cellular metabolism, by altered nutrient availability or with aging, can impact satellite cell stemness and fate, as well as differentiation ability.

Interplay between metabolites and the epigenome in regulating embryonic and adult stem cell potency and maintenance

The environment surrounding stem cells has the ability to elicit profound, heritable epigenetic changes orchestrated by multiple epigenetic mechanisms, which can be modulated by the level of specific metabolites. In this review, we highlight the significance of metabolism in regulating stem cell homeostasis, cell state, and differentiation capacity, using metabolic regulation of embryonic and adult muscle stem cells as examples, and cast light on the interaction between cellular metabolism and epigenetics.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma