SGOCM

The catalytic activity of serine hydroxymethyltransferase is essential for de novo nuclear dTMP synthesis in lung cancer cells

Cancer cells reprogramme one-carbon metabolism (OCM) to sustain growth and proliferation. Depending on cell demands, serine hydroxymethyltransferase (SHMT) dynamically changes the fluxes of OCM by reversibly converting serine and tetrahydrofolate (THF) into 5,10-methylene-THF and glycine. SHMT is a tetrameric enzyme that mainly exists in three isoforms; two localize in the cytosol (SHMT1/SHMT2α) and one (SHMT2) in the mitochondria. Both the cytosolic isoforms can also translocate to the nucleus to sustain de novo thymidylate synthesis and support cell proliferation.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma