missing data

Bayesian latent class models for capture–recapture in the presence of missing data

We propose a method for estimating the size of a population in a multiple record system in the presence of missing data. The method is based on a latent class model where the parameters and the latent structure are estimated using a Gibbs sampler. The proposed approach is illustrated through the analysis of a data set already known in the literature, which consists of five registrations of neural tube defects.

Population Size Estimation Using Multiple Incomplete Lists with Overcoverage

The quantity and quality of administrative information available to National Statistical Institutes have been constantly increasing over the past several years. However, different sources of administrative data are not expected to each have the same population coverage, so that estimating the true population size from the collective set of data poses several methodological challenges that set the problem apart from a classical capture-recapture setting.

Mixed hidden Markov quantile regression models for longitudinal data with possibly incomplete sequences

Quantile regression provides a detailed and robust picture of the distribution of a response variable, conditional on a set of observed covariates. Recently, it has be been extended to the analysis of longitudinal continuous outcomes using either time-constant or time-varying random parameters. However, in real-life data, we frequently observe both temporal shocks in the overall trend and individual-specific heterogeneity in model parameters. A benchmark dataset on HIV progression gives a clear example.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma