A dynamic recommender system for online judges based on autoencoder neural networks
In recent years, we have witnessed the raising popularity of programming contests such as International Olympiads in Informatics (IOI) and ACM International Collegiate Programming Contest (ICPC). In order to train for these contests, there are several Online Judges available, in which users can test their skills against a usually large set of programming tasks. In the literature, so far few papers have addressed the problem of recommending tasks in online judges.