Automated

Macaque monkeys learn and perform a non-match-to-goal task using an automated home cage training procedure

In neurophysiology, nonhuman primates represent an important model for studying the brain. Typically, monkeys are moved from their home cage to an experimental room daily, where they sit in a primate chair and interact with electronic devices. Refining this procedure would make the researchers' work easier and improve the animals' welfare. To address this issue, we used home-cage training to train two macaque monkeys in a non-match-to-goal task, where each trial required a switch from the choice made in the previous trial to obtain a reward.

Fusing Self-Organized Neural Network and Keypoint Clustering for Localized Real-Time Background Subtraction

Moving object detection in video streams plays a key role in many computer vision applications. In particular, separation between background and foreground items represents a main prerequisite to carry out more complex tasks, such as object classification, vehicle tracking, and person re-identification. Despite the progress made in recent years, a main challenge of moving object detection still regards the management of dynamic aspects, including bootstrapping and illumination changes.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma