semantic role labeling

VerbAtlas: a novel large-scale verbal semantic resource and its application to semantic role labeling

We present VerbAtlas, a new, hand-crafted lexical-semantic resource whose goal is to bring together all verbal synsets from WordNet into semantically-coherent frames. The frames define a common, prototypical argument structure while at the same time providing new concept-specific information.

Bridging the Gap in Multilingual Semantic Role Labeling: A Language-Agnostic Approach

Recent research indicates that taking advantage of complex syntactic features leads to favorable results in Semantic Role Labeling. Nonetheless, an analysis of the latest state-of-the-art multilingual systems reveals the difficulty of bridging the wide gap in performance between high-resource (e.g., English) and low-resource (e.g., German) settings. To overcome this issue, we propose a fully language-agnostic model that does away with morphological and syntactic features to achieve robustness across languages.

InVeRo: Making Semantic Role Labeling Accessible with Intelligible Verbs and Roles

Semantic Role Labeling (SRL) is deeply dependent on complex linguistic resources and sophisticated neural models, which makes the task difficult to approach for non-experts. To address this issue we present a new platform named Intelligible Verbs and Roles (InVeRo). This platform provides access to a new verb resource, VerbAtlas, and a state-of-the-art pre-trained implementation of a neural, span-based architecture for SRL.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma