Graph

A new proof of the flat wall theorem

We give an elementary and self-contained proof, and a numerical improvement, of a weaker form of the excluded clique minor theorem of Robertson and Seymour, the following. Let t,r >= 1 be integers, and let R = 49152t(24) (40t(2) +r). An r-wall is obtained from a 2r x r-grid by deleting every odd vertical edge in every odd row and every even vertical edge in every even row, then deleting the two resulting vertices of degree one, and finally subdividing edges arbitrarily. The vertices of degree two that existed before the subdivision are called the pegs of the r-wall.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma