CNN

Social Network Identification Through Image Classification with CNN

Identification of the source social network based on the downloaded images is an important multimedia forensic task with significant cybersecurity implications in light of the sheer volume of images and videos shared across various social media platforms. Such a task has been proved possible by exploiting distinctive traces embedded in image content by social networks (SNs).

Learning Pose-Aware Models for Pose-Invariant Face Recognition in the Wild

We propose a method designed to push the frontiers of unconstrained face recognition in the wild with an emphasis on extreme out-of-plane pose variations. Existing methods either expect a single model to learn pose invariance by training on massive amounts of data or else normalize images by aligning faces to a single frontal pose. Contrary to these, our method is designed to explicitly tackle pose variations. Our proposed Pose-Aware Models (PAM) process a face image using several pose-specific, deep convolutional neural networks (CNN).

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma