Underactuated Robots

Learning Feedback Linearization Control Without Torque Measurements

Feedback Linearization (FL) allows the best control performance in executing a desired motion task when an accurate dynamic model of a fully actuated robot is available. However, due to residual parametric uncertainties and unmodeled dynamic effects, a complete cancellation of the nonlinear dynamics by feedback is hardly achieved in practice. In this paper, we summarize a novel learning framework aimed at improving online the torque correction necessary for obtaining perfect cancellation with a FL controller, using only joint position measurements.

Enforcing Constraints over Learned Policies via Nonlinear MPC: Application to the Pendubot

In recent years Reinforcement Learning (RL) has achieved remarkable results. Nonetheless RL algorithms prove to be unsuccessful in robotics applications where constraints satisfaction is involved, e.g. for safety. In this work we propose a control algorithm that allows to enforce constraints over a learned control policy. Hence we combine Nonlinear Model Predictive Control (NMPC) with control-state trajectories generated from the learned policy at each time step. We prove the effectiveness of our method on the Pendubot, a challenging underactuated robot.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma