Nonlinear optimization

Distributed algorithms for convex problems with linear coupling constraints

Distributed and parallel algorithms have been frequently investigated in the recent years, in particular in applications like machine learning. Nonetheless, only a small subclass of the optimization algorithms in the literature can be easily distributed, for the presence, e.g., of coupling constraints that make all the variables dependent from each other with respect to the feasible set.

Least squares optimization: From theory to practice

Nowadays, Nonlinear Least-Squares embodies the foundation of many Robotics and Computer Vision systems. The research community deeply investigated this topic in the last few years, and this resulted in the development of several open-source solvers to approach constantly increasing classes of problems. In this work, we propose a unified methodology to design and develop efficient Least-Squares Optimization algorithms, focusing on the structures and patterns of each specific domain.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma