precision agriculture

Crop and Weeds Classification for Precision Agriculture Using Context-Independent Pixel-Wise Segmentation

Precision agriculture is gaining increasing attention because of the possible reduction of agricultural inputs (e.g., fertilizers and pesticides) that can be obtained by using hightech equipment, including robots. In this paper, we focus on an agricultural robotics system that addresses the weeding problem by means of selective spraying or mechanical removal of the detected weeds. In particular, we describe a deep learning based method to allow a robot to perform an accurate weed/crop classification using a sequence of two Convolutional Neural Networks (CNNs) applied to RGB images.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma