fluctuating hydrodynamics

Thermally activated vapor bubble nucleation: The Landau-Lifshitz--Van der Waals approach

Vapor bubbles are formed in liquids by two mechanisms: evaporation (temperature above the boiling threshold) and cavitation (pressure below the vapor pressure). The liquid resists in these metastable (overheating and tensile, respectively) states for a long time since bubble nucleation is an activated process that needs to surmount the free energy barrier separating the liquid and the vapor states. The bubble nucleation rate is difficult to assess and, typically, only for extremely small systems treated at an atomistic level of detail.

Fluctuating hydrodynamics as a tool to investigate nucleation of cavitation bubbles

Vapor bubbles can be formed in liquids by increasing the temperature over the boiling threshold (evaporation) or by reducing the pressure below its vapor pressure threshold (cavitation). The liquid can be held in these tensile conditions (metastable states) for a long time without any bubble formation. The bubble nucleation is indeed an activated process, in fact a given amount of energy is needed to bring the liquid from that local stable condition into a more stable one, where a vapor bubble is formed.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma