α

The molecular species responsible for α1-antitrypsin deficiency are suppressed by a small molecule chaperone

The formation of ordered Z (Glu342Lys) α1-antitrypsin polymers in hepatocytes is central to liver disease in α1-antitrypsin deficiency. In vitro experiments have identified an intermediate conformational state (M*) that precedes polymer formation, but this has yet to be identified in vivo. Moreover, the mechanism of polymer formation and their fate in cells have been incompletely characterised.

Nanometric ion pair complexes of tobramycin forming microparticles for the treatment of Pseudomonas aeruginosa infections in cystic fibrosis

Sustained pulmonary delivery of tobramycin from microparticles composed of drug/polymer nanocomplexes offers several advantages against traditional delivery methods. Namely, in patients with cystic fibrosis, microparticle delivery can protect the tobramycin being delivered from strong mucoadhesive interactions, thus avoiding effects on its diffusion toward the infection site. Polymeric ion-pair complexes were obtained starting from two synthetic polyanions, through impregnation of their solid dissociated forms with tobramycin in aqueous solution.

α,γ-Diketocarboxylic acids and their esters act as carbonic anhydrase IX and XII selective inhibitors

Among human carbonic anhydrase (CA) inhibitors, the α,γ-diketocarboxylic acids and esters are still poorly investigated. Here, we report the first compounds of this class (1-6) acting as potent inhibitors at low nanomolar level against the cancer-related human CA IX and XII, and 2-3 magnitude orders selective toward the cytosolic isoforms hCA I and II. At enzymatic level, the α,γ-diketoacids 1-3 were more effective inhibitors compared to the corresponding ethyl esters 4-6.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma