Local and global prediction on stress-strain behavior of FRP-confined square concrete sections
The objective of this paper is to introduce a modified local-to-global methodology to understand the effect of fiber reinforced polymer (FRP) confinement on square concrete section. Traditionally, the effect of confinement on square sections has been evaluated through the so-called "arching effect" developed for steel and FRP-confined sections. FRP-confined square section was characterized by a non-uniform confinement stress field, which makes concrete strength strongly position dependent.