Mean-value theorem

A mean-value Approach to solve fractional differential and integral equations

In this paper we provide a new numerical method to solve nonlinear fractional differential and integral equations. The algorithm proposed is based on an application of the fractional Mean-Value Theorem, which allows to transform the initial problem into a suitable system of nonlinear equations. The latter is easily solved through standard methods. We prove that the approximated solution converges to the exact (unknown) one, with a rate of convergence depending on the non-integer order characterizing the fractional equation.

A new numerical method for a class of Volterra and Fredholm integral equations

In the present work, we introduce a new numerical method based on a strong version of the mean-value theorem for integrals to solve quadratic Volterra integral equations and Fredholm integral equations of the second kind, for which there are theoretical monotonic non-negative solutions. By means of an equality theorem, the integral that appears in the aforementioned equations is transformed into one that enables a more accurate numerical solution with fewer calculations than other previously described methods. Convergence analysis is given.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma