Nucleation and growth of metal nanoparticles on a planar electrode: a new model based on iso-nucleation-time classes of particles
An assembly of hemispherical particles continuously nucleating on a planar electrode and growing under mixed kinetic-diffusion control is here considered. A model is derived, from the exact boundary integral formulation of the diffusion equation, to predict the overall current evolution, and the radii distribution of particles nucleating within any prescribed time interval. Iso-nucleation-time classes are introduced in the model, grouping particles (almost) simultaneously nucleating over the underlying substrate.