sequence modelling

Transformer Networks for Trajectory Forecasting

Most recent successes on forecasting the people motion are based on LSTM models and all most recent progress has been achieved by modelling the social interaction among people and the people interaction with the scene. We question the use of the LSTM models and propose the novel use of Transformer Networks for trajectory forecasting. This is a fundamental switch from the sequential step-by-step processing of LSTMs to the only-attention-based memory mechanisms of Transformers.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma