Robot pose

Efficient Long-term Mapping in Dynamic Environments

As autonomous robots are increasingly being introduced in real-world environments operating for long periods of time, the difficulties of long-term mapping are attracting the attention of the robotics research community. This paper proposes a full SLAM system capable of handling the dynamics of the environment across a single or multiple mapping sessions. Using the pose graph SLAM paradigm, the system works on local maps in the form of 2D point cloud data which are updated over time to store the most up-to-date state of the environment.

Active SLAM using Connectivity Graphs as Priors

Mobile robots can be considered completely autonomous if they embed active algorithms for Simultaneous Localization And Mapping (SLAM). This means that the robot is able to autonomously, or actively, explore and create a reliable map of the environment, while simultaneously estimating its pose. In this paper, we propose a novel framework to robustly solve the active SLAM problem, in scenarios in which some prior information about the environment is available in the form of a topo-metric graph.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma