Direct Numerical Simulations of the Evaporation of Dilute Sprays in Turbulent Swirling Jets
The effects of swirled inflows on the evaporation of dilute acetone droplets dispersed in turbulent jets are investigated by means of direct numerical simulation. The numerical framework is based on a hybrid Eulerian–Lagrangian approach and the point-droplet approximation. Phenomenological and statistical analyses of both phases are presented. An enhancement of the droplet vaporization rate with increasing swirl velocities is observed and discussed.