Masonry wall

Dynamic characterization of a system with degradation: A masonry wall

Characterization of the dynamic behavior of linear systems is exhaustively described with a single frequency response curve (frc). For nonlinear systems, which tend to depend on load amplitude, at least one frc for each excitation intensity is required to detect the main characteristics of the dynamic response. Nonlinear systems, more commonly dealt with in the literature, are invariant with respect to the deformation history and, thus, frcs obtained with increasing and decreasing driving frequency coincide, apart from the frequency range with coexistent solutions.

Micromechanical and multiscale computational modeling for stability analysis of masonry elements

This paper presents two micromechanical and a multiscale finite element models for the analysis of masonry walls under out-of-plane instability effects. A two-dimensional modeling of the wall is considered in all approaches, assuming a cylindrical bending. The micromechanical analyses are performed considering elastic beams to model the bricks and either nonlinear beams or interfaces to model the mortar layers. The beam finite elements rely on the force-based formulation and account for large displacements by making use of the corotational approach.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma