Multiscale model

Multiscale analysis of out-of-plane masonry elements using different structural models at macro and microscale

A novel two-scale modeling approach, linking different structural models at macro and microscale, is proposed to describe response of masonry walls with periodic texture. At the higher macroscopic scale, the real heterogeneous material is modeled as a homogenized medium, considering the classical Mindlin-Reissner theory for flat shells. At the lower microscopic scale, a representative masonry Unit Cell (UC), accounting for the actual geometry, arrangement and nonlinear behavior of constituent materials, is analyzed in detail by resorting to a three-dimensional Cauchy model.

A multiscale force-based curved beam element for masonry arches

This paper presents a Timoshenko beam finite element for nonlinear analysis of planar masonry arches. Considering small displacement and strain assumption, the element governing equations are defined according to a force-based formulation that adopts three different parametrizations of the axis planar curve, permitting the exact description of the element geometry for arbitrarily curved arches. Specific quadrature techniques are illustrated to perform numerical integration over the curved axis.

Micromechanical and multiscale computational modeling for stability analysis of masonry elements

This paper presents two micromechanical and a multiscale finite element models for the analysis of masonry walls under out-of-plane instability effects. A two-dimensional modeling of the wall is considered in all approaches, assuming a cylindrical bending. The micromechanical analyses are performed considering elastic beams to model the bricks and either nonlinear beams or interfaces to model the mortar layers. The beam finite elements rely on the force-based formulation and account for large displacements by making use of the corotational approach.

Homogenization of heterogeneous masonry beams

This study presents a two-scale model to describe the out-of-plane masonry response. One-dimensional (1D) structural elements, like masonry columns or strips of long wall characterized by the periodic repetition of bricks and mortar arranged in stack bond, are considered. A damage-friction plasticity law is adopted to model the mortar joint constitutive response, while the bricks are assumed as linear elastic. A 1D beam formulation is introduced at both the structural and micromechanical scale, linking the two levels by means of a kinematic map.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma