Thin-walled beam

Nonlinear dynamic analysis of thin-walled structures adopting a mixed beam finite element model with out-of-plane cross-section warping

This paper focuses on the dynamic response of thin-walled structural elements. A mixed three-dimensional (3D) beam formulation is adopted, that includes the effect of inertia forces under dynamic loading conditions and accounts for out-of-plane cross-section warping. This is introduced by adding a specific displacement field to those due to rigid body motions, and is interpolated in the element volume with the definition of specific shape functions. The element governing equations are derived by expressing the Lagrangian functional in terms of four independent fields, i.e.

Mixed beam formulation with cross-section warping for dynamic analysis of thin-walled structures

This paper presents the formulation of a three-dimensional beam finite element (FE) that accounts for cross-section warping and dynamic inertia effects. The model is the extension of an existing mixed formulation, originally developed for the static analysis of thin-walled beams, to the case of dynamic loading conditions. Four independent fields are considered to derive the element governing equations, i.e. material rigid displacements, strains and stresses and an additional displacement field, describing the out-of-plane warping displacement of the beam cross-sections.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma