Deterministic reversible model of non-equilibrium phase transitions and stochastic counterpart
N point particles move within a billiard table made of two circular cavities connected by a straight channel. The usual billiard dynamics is modified so that it remains deterministic, phase space volumes preserving and time reversal invariant. Particles move in straight lines and are elastically reflected at the boundary of the table, as usual, but those in a channel that are moving away from a cavity invert their motion (rebound), if their number exceeds a given threshold T.