Euler equations with gravity

Arbitrary order finite volume well-balanced schemes for the Euler equations with gravity

This work presents arbitrary high order well balanced finite volume schemes for the Euler equations with a prescribed gravitational field. It is assumed that the desired equilibrium solution is known, and we construct a scheme which is exactly well balanced for that particular equilibrium. The scheme is based on high order reconstructions of the fluctuations from equilibrium of density, velocity, and pressure, and on a well-balanced integration of the source terms, while no assumptions are needed on the numerical flux, beside consistency.

An all speed second order well-balanced IMEX relaxation scheme for the Euler equations with gravity

We present an implicit-explicit well-balanced finite volume scheme for the Euler equations with a gravitational source term which is able to deal also with low Mach flows. To visualize the different scales we use the non-dimensionalized equations on which we apply a pressure splitting and a Suliciu relaxation. On the resulting model, we apply a splitting of the flux into a linear implicit and an non-linear explicit part that leads to a scale independent time-step.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma