Radon measure-valued solutions of first order scalar conservation laws
We study nonnegative solutions of the Cauchy problem ∂ t u + ∂ x [ φ (u) ] = 0 in × (0, T), u = u 0 ≥ 0 in × 0 , \left\\beginaligned &\displaystyle\partial-tu+\partial-x[\varphi(u)]=0&% &\displaystyle\phantom\textin \mathbbR\times(0,T),\\ &\displaystyle u=u-0\geq 0&&\displaystyle\phantom\textin \mathbbR% \times\0\,\endaligned\right. where u 0 u-0 is a Radon measure and φ: [ 0, ∞) → \varphi\colon[0,\infty)\mapsto\mathbbR is a globally Lipschitz continuous function. We construct suitably defined entropy solutions in the space of Radon measures.