line with fast diffusion

Influence of a road on a population in an ecological niche facing climate change

We introduce a model designed to account for the influence of a line with fast diffusion–such as a road or another transport network–on the dynamics of a population in an ecological niche.This model consists of a system of coupled reaction-diffusion equations set on domains with different dimensions (line / plane). We first show that, in a stationary climate, the presence of the line is always deleterious and can even lead the population to extinction. Next, we consider the case where the niche is subject to a displacement, representing the effect of a climate change.

Generalized principal eigenvalues for heterogeneous road-field systems

This paper develops the notion and properties of the generalized principal eigenvalue for an elliptic system coupling an equation in a plane with one on a line in this plane, together with boundary conditions that express exchanges taking place between the plane and the line. This study is motivated by the reaction-diffusion model introduced by Berestycki, Roquejoffre and Rossi [The influence of a line with fast diffusion on Fisher-KPP propagation, J. Math. Biol. 66(4-5) (2013) 743-766] to describe the effect on biological invasions of networks with fast diffusion imbedded in a field.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma