BRAF

Inhibition of methyltransferase dot1l sensitizes to sorafenib treatment aml cells irrespective of mll-rearrangements: A novel therapeutic strategy for pediatric aml

Pediatric acute myeloid leukemia (AML) is an aggressive malignancy with poor prognosis for which there are few effective targeted approaches, despite the numerous genetic alterations, including MLL gene rearrangements (MLL-r). The histone methyltransferase DOT1L is involved in supporting the proliferation of MLL-r cells, for which a target inhibitor, Pinometostat, has been evaluated in a clinical trial recruiting pediatric MLL-r leukemic patients. However, modest clinical effects have been observed.

The potential of BRAF-associated non-coding RNA as a therapeutic target in melanoma

The advent of targeted therapies and immune checkpoints inhibitors has enhanced the treatment of metastatic melanomas. Despite striking improvements of patients' survival, drug resistance continues to limit the efficacy of such treatments. Genetic and nongenetic/adaptive mechanisms of resistance could be involved; in the latter mechanism, noncoding RNAs (ncRNAs) are emerging as key players. Areas covered: This article outlines the current knowledge of ncRNA involvement in BRAF-mutant melanomas and the development of resistance to targeted/immunotherapies.

Real-time detection of BRAF V600E mutation from archival hairy cell leukemia FFPE tissue by nanopore sequencing

The MinION is a miniaturized high-throughput next generation sequencing platform of novel conception. The use of nucleic acids derived from formalin-fixed paraffin-embedded samples is highly desirable, but their adoption for molecular assays is hurdled by the high degree of fragmentation and by the chemical-induced mutations stemming from the fixation protocols.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma