epithelial-to-mesenchymal transition

Beta2-adrenergic signaling affects the phenotype of human cardiac progenitor cells through EMT modulation

Human cardiac progenitor cells (CPCs) offer great promises to cardiac cell therapy for heart failure. Many in vivo studies have shown their therapeutic benefits, paving the way for clinical translation. The 3D model of cardiospheres (CSs) represents a unique niche-like in vitro microenvironment, which includes CPCs and supporting cells. CSs have been shown to form through a process mediated by epithelial-to-mesenchymal transition (EMT).

A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer

Background: Quiescent/slow cycling cells have been identified in several tumors and correlated with therapy resistance. However, the features of chemoresistant populations and the molecular factors linking quiescence to chemoresistance are largely unknown. Methods: A population of chemoresistant quiescent/slow cycling cells was isolated through PKH26 staining (which allows to separate cells on the basis of their proliferation rate) from colorectal cancer (CRC) xenografts and subjected to global gene expression and pathway activation analyses.

Granzyme B in Inflammatory Diseases: Apoptosis, Inflammation, Extracellular Matrix Remodeling, Epithelial-to-Mesenchymal Transition and Fibrosis

Inflammation is strictly interconnected to anti-inflammatory mechanisms to maintain tissue homeostasis. The disruption of immune homeostasis can lead to acute and chronic inflammatory diseases, as cardiovascular, pulmonary, metabolic diseases and cancer. The knowledge of the mechanisms involved in the development and progression of these pathological conditions is important to find effective therapies. Granzyme B (GrB) is a serine protease produced by a variety of immune, non-immune and tumor cells.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma