pan-cancer

Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines

The Cancer Genome Atlas (TCGA) cancer genomicsdataset includes over 10,000 tumor-normal exomepairs across 33 different cancer types, in total >400TB of raw data files requiring analysis. Here wedescribe the Multi-Center Mutation Calling in Multi-ple Cancers project, our effort to generate a compre-hensive encyclopedia of somatic mutation calls forthe TCGA data to enable robust cross-tumor-typeanalyses. Our approach accounts for varianceand batch effects introduced by the rapid advance-ment of DNA extraction, hybridization-capture,sequencing, and analysis methods over time.

Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas

Precision oncology uses genomic evidence to match patients with treatment but often fails to
identify all patients who may respond. The transcriptome of these “hidden responders” may reveal
responsive molecular states. We describe and evaluate a machine-learning approach to classify
aberrant pathway activity in tumors, which may aid in hidden responder identification. The
algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across
The Cancer Genome Atlas (TCGA) PanCanAtlas project to predict aberrant molecular states in

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma