Frataxin

Frataxin deficiency in Friedreich's ataxia is associated with reduced levels of HAX-1, a regulator of cardiomyocyte death and survival

Frataxin deficiency, responsible for Friedreich's ataxia (FRDA), is crucial for cell survival since it critically affects viability of neurons, pancreatic beta cells and cardiomyocytes. In FRDA, the heart is frequently affected with typical manifestation of hypertrophic cardiomyopathy, which can progress to heart failure and cause premature death. A microarray analysis performed on FRDA patient's lymphoblastoid cells stably reconstituted with frataxin, indicated HS-1-associated protein X-1 (HAX-1) as the most significantly upregulated transcript (FC = +2, P < 0.0006).

Compound heterozygosity for an expanded (GAA) and a (GAAGGA) repeat at FXN locus: from a diagnostic pitfall to potential clues to the pathogenesis of Friedreich ataxia

Friedreich's ataxia (FRDA) is usually due to a homozygous GAA expansion in intron 1 of the frataxin (FXN) gene. Rarely, uncommon molecular rearrangements at the FXN locus can cause pitfalls in the molecular diagnosis of FRDA. Here we describe a family whose proband was affected by late-onset Friedreich's ataxia (LOFA); long-range PCR (LR-PCR) documented two small expanded GAA alleles both in the proband and in her unaffected younger sister, who therefore received a diagnosis of pre-symptomatic LOFA.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma