clustered data

An ensemble approach to short‐term forecast of COVID‐19 intensive care occupancy in Italian regions

The availability of intensive care beds during the COVID‐19 epidemic is crucial to guarantee the best possible treatment to severely affected patients. In this work we show a simple strategy for short‐term prediction of COVID‐19 intensive care unit (ICU) beds, that has proved very effective during the Italian outbreak in February to May 2020. Our approach is based on an optimal ensemble of two simple methods: a generalized linear mixed regression model, which pools information over different areas, and an area‐specific nonstationary integer autoregressive methodology.

The study of the academic adjustment and social inclusion of immigrant students in Italy: Methodological challenges and empirical evidence

Il presente contributo esamina vari aspetti psicologici relativi all’adattamento scolastico e all’inclusione sociale dei giovani con un background migratorio a scuola e affronta alcune questioni metodologiche, discutendo parallelamente delle evidenze empiriche ottenute su campioni rappresentativi di studenti delle scuole italiane. Inizialmente viene trattato il problema dell’analisi di dati raggruppati, il quale sottende le ricerche psicologiche su base campionaria effettuate nel contesto scolastico.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma