adaptation and learning over networks

Distributed adaptive learning of graph signals

The aim of this paper is to propose distributed strategies for adaptive learning of signals defined over graphs. Assuming the graph signal to be bandlimited, the method enables distributed reconstruction, with guaranteed performance in terms of mean-square error, and tracking from a limited number of sampled observations taken from a subset of vertices. A detailed mean-square analysis is carried out and illustrates the role played by the sampling strategy on the performance of the proposed method. Finally, some useful strategies for distributed selection of the sampling set are provided.

Sampling and recovery of graph signals

The aim of this chapter is to give an overview of the recent advances related to sampling and recovery of signals defined over graphs. First, we illustrate the conditions for perfect recovery of bandlimited graph signals from samples collected over a selected set of vertices. Then, we describe some sampling design criteria proposed in the literature to mitigate the effect of noise and model mismatching when performing graph signal recovery.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma