alkaloids

Roots drive oligogalacturonide-induced systemic immunity in tomato

Oligogalacturonides (OGs) are fragments of pectin released from the plant cell wall during insect or pathogen attack. They can be perceived by the plant as damage signals, triggering local and systemic defence responses. Here, we analyse the dynamics of local and systemic responses to OG perception in tomato roots or shoots, exploring their impact across the plant and their relevance in pathogen resistance.

Not ordinary antimalarial drugs. Madagascar plant decoctions potentiating the chloroquine action against Plasmodium parasites

Malaria mortality rates have fallen by 47% globally since 2000 and by 54% in the African region, but they are still a major problem. Malaria is caused by Plasmodium parasites, vectored to people through Anopheles mosquitoes, which mainly bite between dusk and dawn. Currently, a growing number of Plasmodium species and strains developed resistance to the most commonly used anti-malarial drugs. Chloroquine (CQ), the most commonly used anti-malarial drug, actually is not effective in a number of cases, and growing Plasmodium resistance has been already observed to artemisinin.

Green routes for the production of enantiopure benzylisoquinoline alkaloids

Benzylisoquinoline alkaloids (BIAs) are among the most important plant secondary metabolites, in that they include a number of biologically active substances widely employed as pharmaceuticals. Isolation of BIAs from their natural sources is an expensive and time-consuming procedure as they accumulate in very low levels in plant. Moreover, total synthesis is challenging due to the presence of stereogenic centers. In view of these considerations, green and scalable methods for BIA synthesis using fully enzymatic approaches are getting more and more attention.

Naturally-occurring alkaloids of plant origin as potential antimicrobials against antibiotic-resistant infections

Antibiotic resistance is now considered a worldwide problem that puts public health at risk. The onset of bacterial strains resistant to conventional antibiotics and the scarcity of new drugs have prompted scientific research to re-evaluate natural products as molecules with high biological and chemical potential. A class of natural compounds of significant importance is represented by alkaloids derived from higher plants.

Nigritanine as a new potential antimicrobial alkaloid for the treatment of staphylococcus aureus-induced infections

Staphylococcus aureus is a major human pathogen causing a wide range of nosocomial infections including pulmonary, urinary, and skin infections. Notably, the emergence of bacterial strains resistant to conventional antibiotics has prompted researchers to find new compounds capable of killing these pathogens. Nature is undoubtedly an invaluable source of bioactive molecules characterized by an ample chemical diversity. They can act as unique platform providing new scaffolds for further chemical modifications in order to obtain compounds with optimized biological activity.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma