antibacterial activity

Antibacterial effectiveness of fecal water and in vitro activity of a multi-strain probiotic formulation against multi-drug resistant microorganisms

Introduction: Intestinal colonization with multi-drug resistant (MDR) microorganisms is a consequence of antimicrobial-induced gut dysbiosis. Given the effect of probiotics in modulating gut microbiota, the aim of the study was to investigate whether the ingestion of high concentration multi-strain probiotic formulation would change the antibacterial activity of the feces against clinical strains ofMDRmicroorganisms. The corresponding in vitro antibacterial activity was also investigated.

Borate and silicate bioactive glass coatings prepared by nanosecond pulsed laser deposition

Silicate (13-93) and borate (13-93-B3) bioactive glass coatings were successfully deposited on titanium using the nanosecond Pulsed Laser Deposition technique. The coatings’ microstructural characteristics, compositions and morphologies were examined by a number of physico-chemical techniques. The deposited coatings retain the same functional groups of the targets, are a few microns thick, amorphous, compact and crack free. Their surface is characterized by the presence of micrometric and nanometric particles.

Nanoemulsions of Satureja montana essential oil. Antimicrobial and antibiofilm activity against avian Escherichia coli strains

Satureja montana essential oil (SEO) presents a wide range of biological activities due to its high content of active phytochemicals. In order to improve the essential oil’s (EO) properties, oil in water nanoemulsions (NEs) composed of SEO and Tween-80 were prepared, characterized, and their antimicrobial and antibiofilm properties assayed against Escherichia coli strains isolated from healthy chicken.

Structure, drug absorption, bioactive and antibacterial properties of sol-gel SiO2/ZrO2 materials

Zirconia widely used in biomedical applications has three crystalline forms, but the transformation from tetragonal to monoclinic is a serious problem in the biomedical field. In this regards, silica was added to stabilize the tetragonal zirconia phase. In fact, in this study four SiO2/ZrO2 composites with different percentages of zirconia were synthesized with the sol-gel method. The aim of the present study was to check the suitability of these materials as a vector in the adsorption of an active drug.

Antimicrobial essential oil formulation: chitosan coated nanoemulsions for nose to brain delivery

Brain infections as meningitis and encephalitis are attracting a great interest. Challenges in the treatment of these diseases are mainly represented by the blood brain barrier (BBB) that impairs the efficient delivery of even very potent drugs to reach the brain. The nose to the brain administration route, is a non-invasive alternative for a quick onset of action, and enables the transport of numerous medicinal agents straight to the brain thus workarounding the BBB through the highly vascularized olfactory region.

Surface disinfections: present and future

The propagation of antibiotic resistance increases the chances of major infections for patients during hospitalization and the spread of health related diseases. Therefore finding new and effective solutions to prevent the proliferation of pathogenic microorganisms is critical, in order to protect hospital environment, such as the surfaces of biomedical devices. Modern nanotechnology has proven to be an effective countermeasure to tackle the threat of infections.

Graphene-based dental adhesive with anti-biofilm activity

BACKGROUND:

Secondary caries are considered the main cause of dental restoration failure. In this context, anti-biofilm and bactericidal properties are desired in dental materials against pathogens such as Streptococcus mutans. To this purpose, graphene based materials can be used as fillers of polymer dental adhesives. In this work, we investigated the possibility to use as filler of dental adhesives, graphene nanoplatelets (GNP), a non toxic hydrophobic nanomaterial with antimicrobial and anti-biofilm properties.
RESULTS:

Liquid and vapour phase of lavandin (Lavandula × intermedia) essential oil: chemical composition and antimicrobial activity

Essential oils from Lavandula genus and the obtained hybrids are widely used for different purposes such as perfume production in the cosmetic field and for its biological properties. This is the first study on the liquid and vapour phase of Lavandula × intermedia “Grosso” essential oil grown in the Lazio Region, Italy, investigated using headspace coupled to gas chromatography and mass spectrometry (HS-GC/MS).

Satureja montana L. essential oils. Chemical profiles/phytochemical screening, antimicrobial activity and o/w nanoemulsion formulations

Chemical fingerprints of four different Satureja montana L. essential oils (SEOs) were assayed by an untargeted metabolomics approach based on Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) coupled with either electrospray ionization or atmospheric pressure chemical ionization ion sources. Analysis and relative quantification of the non-polar volatile fraction were conducted by gas chromatography (GC) coupled to MS.

In vitro antimicrobial activity of plant extracts against Pseudomonas syringae pv. actinidiae causal agent of bacterial canker in kiwifruit

Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, is considered the main pathogen of yellow-, green- and red-fleshed kiwifruit. All major kiwifruit producing countries in the world have been affected by this bacterial pathogen, leading to substantial economic losses. The control of bacterial canker of kiwifruit is based only on preventive methods or on the use of copper compounds that can cause phytotoxicity problems. In this study, the in vitro antibacterial activity of seven different plant extracts against eight Psa strains has been evaluated.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma