antiviral activity

Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors

A main challenge in parasitology is the development of reliable tools to prevent or treat mosquito-borne diseases. We investigated the toxicity of magnetic nanoparticles (MNP) produced by Magnetospirillum gryphiswaldense (strain MSR-1) on chloroquine-resistant (CQ-r) and sensitive (CQ-s) Plasmodium falciparum, dengue virus (DEN-2), and two of their main vectors, Anopheles stephensi and Aedes aegypti, respectively. MNP were studied by Fourier-transform infrared spectroscopy and transmission electron microscopy. They were toxic to larvae and pupae of An.

Inhibitors of yellow fever virus replication based on 1,3,5-triphenyl-4,5-dihydropyrazole scaffold: design, synthesis and antiviral evaluation

By the antiviral screening of an in house library of pyrazoline compounds, 4-(3-(4-phenoxyphenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)benzenesulfonamide (5a) was identified as a promising hit compoundfor the development of anti- Yellow Fever Virus (YFV) agents. Structural optimization studies were focused on the development of 5a analogues which retain the potency as YFV inhibitors and show a reduced cytotoxicity.

design, synthesis, antiviral evaluation, and SAR studies of new 1-(phenylsulfonyl)-1H-pyrazol-4-yl-methylaniline derivatives

A series of N-((3-phenyl-1-(phenylsulfonyl)-1H-pyrazol-4-yl)methyl)anilines 7a-p and 8a-l, structurally related to previously synthesized and tested (N-(1,3-diphenyl-1H-pyrazol-4-yl)methyl)anilines (1a-v), were designed and synthesized. The new derivatives were evaluated in cell-based assays for their cytotoxicity and antiviral activity against a large panel of RNA and DNA viruses of public health significance. Generally, the tested compounds did not display cytotoxicity toward the cell lines used.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma