Arabidopsis

Genome-wide RNA-seq analysis indicates that the DAG1 transcription factor promotes hypocotyl elongation acting on ABA, ethylene and auxin signaling

Hypocotyl elongation is influenced by light and hormones, but the molecular mechanisms underlying
this process are not yet fully elucidated. We had previously suggested that the Arabidopsis DOF
transcription factor DAG1 may be a negative component of the mechanism of light-mediated inhibition
of hypocotyl elongation, as light-grown dag1 knock-out mutant seedlings show significant shorter
hypocotyls than the wild type. By using high-throughput RNA-seq, we compared the transcriptome

Abscisic acid inhibits hypocotyl elongation acting on gibberellins, DELLA proteins and auxin

Hypocotyl elongation of Arabidopsis seedlings is influenced by light and numerous growth factors. Light induces inhibition of hypocotyl elongation (photomorphogenesis), whereas in the dark hypocotyl elongation is promoted (skotomorphogenesis). Abscisic acid (ABA) plays a major role in inhibition of hypocotyl elongation, but the molecular mechanism remains unclear.

Proline synthesis in developing microspores is required for pollen development and fertility

Background: In many plants, the amino acid proline is strongly accumulated in pollen and disruption of proline synthesis caused abortion of microspore development in Arabidopsis. So far, it was unclear whether local biosynthesis or transport of proline determines the success of fertile pollen development.

Differential spatial distribution of miR165/6 determines variability in plant root anatomy

A clear example of interspecific variation is the number of root cortical layers in plants. The genetic
mechanisms underlying this variability are poorly understood, partly due to the lack of a convenient
model. Here, we demonstrate that Cardamine hirsuta, unlike Arabidopsis thaliana, has two cortical
layers that are patterned during late embryogenesis. We show that a miR165/6-dependent
distribution of the HOMEODOMAIN LEUCINE ZIPPER III (HD-ZIPIII) transcription factor

In planta preliminary screening of ER glycoprotein folding quality control (ERQC) modulators

Small molecule modulators of the Endoplasmic Reticulum glycoprotein folding quality control (ERQC) machinery have broad-spectrum antiviral activity against a number of enveloped viruses and have the potential to rescue secretion of misfolded but active glycoproteins in rare diseases. In vivo assays of candidate inhibitors in mammals are expensive and cannot be afforded at the preliminary stages of drug development programs.

Methods of isolation and characterization of oligogalacturonide elicitors

Oligogalacturonides (OGs) are pectic fragments derived from the partial degradation of homogalacturonan in the plant cell wall and able to elicit plant defence responses. Recent methodological advances in the isolation of OGs from plant tissues and their characterization have confirmed their role as bona fide plant Damage-Associated Molecular Patterns. Here, we describe the methods for the isolation of OGs from Arabidopsis leaf tissues and for the characterization of OG structure and biological activity.

Inhibition of Polycomb Repressive Complex2 activity reduces trimethylation of H3K27 and affects development in Arabidopsis seedlings

Background: Polycomb repressive complex 2 (PRC2) is an epigenetic transcriptional repression system, whose
catalytic subunit (ENHANCER OF ZESTE HOMOLOG 2, EZH2 in animals) is responsible for trimethylating histone H3
at lysine 27 (H3K27me3). In mammals, gain-of-function mutations as well as overexpression of EZH2 have been
associated with several tumors, therefore making this subunit a suitable target for the development of selective
inhibitors. Indeed, highly specific small-molecule inhibitors of EZH2 have been reported. In plants, mutations in

Jasmonate and nitric oxide roles in the control of xylary cell formation and identity in Arabidopsis seedlings

In basal hypocotyls of dark-grown Arabidopsis seedlings, xylary cells may form from the pericycle as an alternative to another developmental program, i.e. adventitious roots. It is known that several hormones may induce xylogenesis, as jasmonic acid (JA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA), which also affect xylary cell identity. Recent studies with the ethylene (ET)-perception mutant ein3eil1 and the ET-precursor 1-aminocyclopropane-1-carboxylic acid (ACC) have shown ET involvement in IBA induced ectopic metaxylem.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma