Stochastic Fairness and Language-Theoretic Fairness in Planning in Nondeterministic Domains
We address two central notions of fairness in the literature of nondeterministic fully observable domains. The first, which we call stochastic fairness, is classical, and assumes an environment which operates probabilistically using possibly unknown probabilities. The second, which is language-theoretic, assumes that if an action is taken from a given state infinitely often then all its possible outcomes should appear infinitely often; we call this state-action fairness. While the two notions coincide for standard reachability goals, they differ for temporally extended goals.