artificial neural networks (ANNs)

Classification of healthy subjects and Alzheimer's disease patients with dementia from cortical sources of resting state EEG rhythms. A study using artificial neural networks

Previous evidence showed a 75.5% best accuracy in the classification of 120 Alzheimer's disease (AD) patients with dementia and 100 matched normal elderly (Nold) subjects based on cortical source current density and linear lagged connectivity estimated by eLORETA freeware from resting state eyes-closed electroencephalographic (rsEEG) rhythms (Babiloni et al., 2016a). Specifically, that accuracy was reached using the ratio between occipital delta and alpha1 current density for a linear univariate classifier (receiver operating characteristic curves).

Remote sensing of forest biomass using gnss reflectometry

In this study, the capability of Global Navigation Satellite System Reflectometry in evaluating forest biomass from space has been investigated by using data coming from the TechDemoSat-1 (TDS-1) mission of Surrey Satellite Technology Ltd. and from the Cyclone Satellite System (CyGNSS) mission of NASA. The analysis has been first conducted using TDS-1 data on a local scale, by selecting five test areas located in different parts of the Earth's surface. The areas were chosen as examples of various forest coverages, including equatorial and boreal forests.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma