astrocytes

Evidence of an increased neuronal activation-to-resting glucose uptake ratio in the visual cortex of migraine patients. A study comparing18FDG-PET and visual evoked potentials

Background: Migraine attacks might be triggered by a disruption of cerebral homeostasis. During the interictal period migraine patients are characterized by abnormal sensory information processing, but this functional abnormality may not be sufficient to disrupt the physiological equilibrium of the cortex unless it is accompanied by additional pathological mechanisms, like a reduction in energetic reserves.

Looking for a treatment for the early stage of Alzheimer’s disease: preclinical evidence with co-ultramicronized palmitoylethanolamide and luteolin

Background: At the earliest stage of Alzheimer's disease (AD), although patients are still asymptomatic, cerebral alterations have already been triggered. In addition to beta amyloid (Aβ) accumulation, both glial alterations and neuroinflammation have been documented at this stage. Starting treatment at this prodromal AD stage could be a valuable therapeutic strategy. AD requires long-term care; therefore, only compounds with a high safety profile can be used, such as the new formulation containing palmitoylethanolamide and luteolin (co-ultra PEALut) already approved for human use.

Altered waste disposal system in aging and Alzheimer’s disease: focus on astrocytic aquaporin-4

Among the diverse cell types included in the general population named glia, astrocytes emerge as being the focus of a growing body of research aimed at characterizing their heterogeneous and complex functions. Alterations of both their morphology and activities have been linked to a variety of neurological diseases. One crucial physiological need satisfied by astrocytes is the cleansing of the cerebral tissue from waste molecules.

Kv1.3 activity perturbs the homeostatic properties of astrocytes in glioma

Glial cells actively maintain the homeostasis of brain parenchyma, regulating neuronal excitability and preserving the physiological composition of the extracellular milieu. Under pathological conditions, some functions of glial cells could be compromised, exacerbating the neurotoxic processes. We investigated if the homeostatic activities of astrocytes and microglia could be modulated by the voltage-gated K+ channel Kv1.3.

Neuroinflammatory processes, A1 astrocyte activation and protein aggregation in the retina of Alzheimer’s disease patients, possible biomarkers for early diagnosis

Alzheimer's disease (AD), a primary cause of dementia in the aging population, is characterized by extracellular amyloid-beta peptides aggregation, intracellular deposits of hyperphosphorylated tau, neurodegeneration and glial activation in the brain. It is commonly thought that the lack of early diagnostic criteria is among the main causes of pharmacological therapy and clinical trials failure; therefore, the actual challenge is to define new biomarkers and non-invasive technologies to measure neuropathological changes in vivo at pre-symptomatic stages.

Dickkopf-3 causes neuroprotection by inducing vascular endothelial growth factor

Dickkopf-3 (Dkk3) is an atypical member of the Dkk family of Wnt inhibitors, which has been implicated in the pathophysiology of neurodegenerative disorders. However, the role of Dkk3 in mechanisms of cell degeneration and protection is unknown. We used Dkk3 knockout mice to examine how endogenous Dkk3 influences ischemic brain damage. In addition, we used primary cultures of astrocytes or mixed cultures of astrocytes and neurons to investigate the action of Dkk3 on cell damage and dissect the underlying molecular mechanisms.

Insights into the release mechanism of astrocytic glutamate evoking in neurons NMDA receptor-mediated slow depolarizing inward currents

The gliotransmitter glutamate in different brain regions modulates neuronal excitability and synaptic transmission through a variety of mechanisms. Among the hallmarks of astrocytic glutamate release are the slow depolarizing inward currents (SICs) in neurons mediated by N-methyl-d-aspartate receptor activation. Different stimuli that evoke Ca 2+ elevations in astrocytes induce neuronal SICs suggesting a Ca 2+ -dependent exocytotic glutamate release mechanism of SIC generation.

Dysfunction of homeostatic control of dopamine by astrocytes in the developing prefrontal cortex leads to cognitive impairments

Astrocytes orchestrate neural development by powerfully coordinating synapse formation and function and, as such, may be critically involved in the pathogenesis of neurodevelopmental abnormalities and cognitive deficits commonly observed in psychiatric disorders. Here, we report the identification of a subset of cortical astrocytes that are competent for regulating dopamine (DA) homeostasis during postnatal development of the prefrontal cortex (PFC), allowing for optimal DA-mediated maturation of excitatory circuits.

Astrocyte: an innovative approach for Alzheimer's disease therapy

Alzheimer's disease is a devastating neurological illness with a high economic burden. The additional morbidity associated with social issues that arises along with the course of this disorder increases the need for a clear understanding of its etiopathogenesis thus allowing an implementation of novel pharmacological strategies. Despite astrocytes have been long described to actively participate in the regulation of brain circuits, available information is still poor. Even less information is available about their precise role in the pathogenesis of illness.

Cannabinoid receptor 2 signaling in neurodegenerative disorders: from pathogenesis to a promising therapeutic target

As a consequence of an increasingly aging population, the number of people affected by neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, is rapidly increasing. Although the etiology of these diseases has not been completely defined, common molecular mechanisms including neuroinflammation, excitotoxicity and mitochondrial dysfunction have been confirmed and can be targeted therapeutically.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma