Optimization of some eigenvalue problems with large drift
This paper is concerned with eigenvalue problems for elliptic operators with large drifts in bounded domains under Dirichlet boundary conditions. We consider the minimal principal eigenvalue and the related principal eigenfunction in the class of drifts having a given, but large, pointwise upper bound. We show that, in the asymptotic limit of large drifts, the maximal points of the optimal principal eigenfunctions converge to the set of points maximizing the distance to the boundary of the domain.