Beyond Standard Model

Enlarging the scope of resonant di-Higgs searches: hunting for Higgs-to-Higgs cascades in 4b final states at the LHC and future colliders

We extend the coverage of resonant di-Higgs searches in the bbbb final state to the process pp ! H1 ! H2H2 ! bbbb, where both H1;2 are spin-0 states beyond the Standard Model. Such a process constitutes a joint discovery mode for the new states H1 and H2. We present the first sensitivity study of this channel, using public LHC data to validate our analysis. We also provide a first estimate of the sensitivity of the search for the HL-LHC and future facilities like the HE-LHC and FCC-hh.

Search for heavy resonances decaying into a W or Z boson and a Higgs boson in final states with leptons and b-jets in 36 fb(-1) of root s=13 TeV pp collisions with the ATLAS detector

A search is conducted for new resonances decaying into a W or Z boson and a 125 GeV Higgs boson in the nu(nu) over barb (b) over bar, l(+/-)nu b (b) over bar, and l(+)l(-)b (b) over bar final states, where l(+/-) = e(+/-) or mu(+/-), in pp collisions at root s = 13 TeV. The data used correspond to a total integrated luminosity of 36.1 fb(-1) collected with the ATLAS detector at the Large Hadron Collider during the 2015 and 2016 data-taking periods.

Search for Higgs boson decays to beyond-the-Standard-Model light bosons in four-lepton events with the ATLAS detector at root s=13 TeV

A search is conducted for a beyond-the-Standard-Model boson using events where a Higgs boson with mass 125 GeV decays to four leptons (l = e or mu). This decay is presumed to occur via an intermediate state which contains one or two on-shell, promptly decaying bosons: H -> ZX/XX -> 4l , where X is a new vector boson Z(d) or pseudoscalar a with mass between 1 and 60 GeV. The search uses pp collision data collected with the ATLAS detector at the LHC with an integrated luminosity of 36.1 fb(-1) at a centre-of-mass energy root s = 13TeV.

Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb(-1) of pp collisions at root s=13 TeV with the ATLAS detector

A search for heavy neutral Higgs bosons and Z' bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb(-1) from proton-proton collisions at root s = 13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to tau(+)tau(-) with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for Z' bosons. The data are in good agreement with the background predicted by the Standard Model.

Quark flavour-violating Higgs decays at the ILC

Flavour-violating Higgs interactions are suppressed in the Standard Model such that their observation would be a clear sign of new physics. We investigate the prospects for detecting quark flavour-violating Higgs decays in the clean ILC environment. Concentrating on the decay to a bottom and a light quark j, we identify the dominant Standard Model background channels as coming from hadronic Standard Model Higgs decays with mis-identified jets. Therefore, good flavour tagging capabilities are essential to keep the background rate under control.

Vector-like quarks coupling discrimination at the LHC and future hadron colliders

The existence of new coloured states with spin one-half, i.e. extra-quarks, is a striking prediction of various classes of new physics models. Should one of these states be discovered during the 13 TeV runs of the LHC or at future high energy hadron colliders, understanding its properties will be crucial in order to shed light on the underlying model structure. Depending on the extra-quarks quantum number under SU(2)L, their coupling to Standard Model quarks and bosons have either a dominant left- or right-handed chiral component.

Cornering pseudoscalar-mediated dark matter with the LHC and cosmology

Models in which dark matter particles communicate with the visible sector through a pseudoscalar mediator are well-motivated both from a theoretical and from a phenomenological standpoint. With direct detection bounds being typically subleading in such scenarios, the main constraints stem either from collider searches for dark matter, or from indirect detection experiments.

Monojet searches for momentum-dependent dark matter interactions

We consider minimal dark matter scenarios featuring momentum-dependent couplings of the dark sector to the Standard Model. We derive constraints from existing LHC searches in the monojet channel, estimate the future LHC sensitivity for an integrated luminosity of 300 fb?1, and compare with models exhibiting conventional momentum-independent interactions with the dark sector. In addition to being well motivated by (composite) pseudo-Goldstone dark matter scenarios, momentum-dependent couplings are interesting as they weaken direct detection constraints.

Search for large missing transverse momentum in association with one top-quark in proton-proton collisions at root s=13 TeV with the ATLAS detector

This paper describes a search for events with one top-quark and large missing transverse momentum in the final state. Data collected during 2015 and 2016 by the ATLAS experiment from 13 TeV proton-proton collisions at the LHC corresponding to an integrated luminosity of 36.1 fb(-1) are used. Two channels are considered, depending on the leptonic or the hadronic decays of the W boson from the top quark. The obtained results are interpreted in the context of simplified models for dark-matter production and for the single production of a vector-like T quark.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma